102 research outputs found

    Demographic Bias in Presentation Attack Detection of Iris Recognition Systems

    Full text link
    With the widespread use of biometric systems, the demographic bias problem raises more attention. Although many studies addressed bias issues in biometric verification, there are no works that analyze the bias in presentation attack detection (PAD) decisions. Hence, we investigate and analyze the demographic bias in iris PAD algorithms in this paper. To enable a clear discussion, we adapt the notions of differential performance and differential outcome to the PAD problem. We study the bias in iris PAD using three baselines (hand-crafted, transfer-learning, and training from scratch) using the NDCLD-2013 database. The experimental results point out that female users will be significantly less protected by the PAD, in comparison to males.Comment: accepted for publication at EUSIPCO202

    Beyond Identity: What Information Is Stored in Biometric Face Templates?

    Full text link
    Deeply-learned face representations enable the success of current face recognition systems. Despite the ability of these representations to encode the identity of an individual, recent works have shown that more information is stored within, such as demographics, image characteristics, and social traits. This threatens the user's privacy, since for many applications these templates are expected to be solely used for recognition purposes. Knowing the encoded information in face templates helps to develop bias-mitigating and privacy-preserving face recognition technologies. This work aims to support the development of these two branches by analysing face templates regarding 113 attributes. Experiments were conducted on two publicly available face embeddings. For evaluating the predictability of the attributes, we trained a massive attribute classifier that is additionally able to accurately state its prediction confidence. This allows us to make more sophisticated statements about the attribute predictability. The results demonstrate that up to 74 attributes can be accurately predicted from face templates. Especially non-permanent attributes, such as age, hairstyles, haircolors, beards, and various accessories, found to be easily-predictable. Since face recognition systems aim to be robust against these variations, future research might build on this work to develop more understandable privacy preserving solutions and build robust and fair face templates.Comment: To appear in IJCB 202

    Face Quality Estimation and Its Correlation to Demographic and Non-Demographic Bias in Face Recognition

    Full text link
    Face quality assessment aims at estimating the utility of a face image for the purpose of recognition. It is a key factor to achieve high face recognition performances. Currently, the high performance of these face recognition systems come with the cost of a strong bias against demographic and non-demographic sub-groups. Recent work has shown that face quality assessment algorithms should adapt to the deployed face recognition system, in order to achieve highly accurate and robust quality estimations. However, this could lead to a bias transfer towards the face quality assessment leading to discriminatory effects e.g. during enrolment. In this work, we present an in-depth analysis of the correlation between bias in face recognition and face quality assessment. Experiments were conducted on two publicly available datasets captured under controlled and uncontrolled circumstances with two popular face embeddings. We evaluated four state-of-the-art solutions for face quality assessment towards biases to pose, ethnicity, and age. The experiments showed that the face quality assessment solutions assign significantly lower quality values towards subgroups affected by the recognition bias demonstrating that these approaches are biased as well. This raises ethical questions towards fairness and discrimination which future works have to address.Comment: Accepted at IJCB202

    Performing Realistic Workout Activity Recognition on Consumer Smartphones

    Get PDF
    Smartphones have become an essential part of our lives. Especially its computing power and its current specifications make a modern smartphone a powerful device for human activity recognition tasks. Equipped with various integrated sensors, a modern smartphone can be leveraged for lots of smart applications. We already investigated the possibility of using an unmodified commercial smartphone to recognize eight strength-based exercises. App-based workouts have become popular in the last few years. The advantage of using a mobile device is that you can practice anywhere at anytime. In our previous work, we proved the possibility of turning a commercial smartphone into an active sonar device to leverage the echo reflected from exercising movement close to the device. By conducting a test study with 14 participants, we showed the first results for cross person evaluation and the generalization ability of our inference models on disjoint participants. In this work, we extended another model to further improve the model generalizability and provided a thorough comparison of our proposed system to other existing state-of-the-art approaches. Finally, a concept of counting the repetitions is also provided in this study as a parallel task to classification

    SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness

    Full text link
    Face image quality is an important factor to enable high performance face recognition systems. Face quality assessment aims at estimating the suitability of a face image for recognition. Previous work proposed supervised solutions that require artificially or human labelled quality values. However, both labelling mechanisms are error-prone as they do not rely on a clear definition of quality and may not know the best characteristics for the utilized face recognition system. Avoiding the use of inaccurate quality labels, we proposed a novel concept to measure face quality based on an arbitrary face recognition model. By determining the embedding variations generated from random subnetworks of a face model, the robustness of a sample representation and thus, its quality is estimated. The experiments are conducted in a cross-database evaluation setting on three publicly available databases. We compare our proposed solution on two face embeddings against six state-of-the-art approaches from academia and industry. The results show that our unsupervised solution outperforms all other approaches in the majority of the investigated scenarios. In contrast to previous works, the proposed solution shows a stable performance over all scenarios. Utilizing the deployed face recognition model for our face quality assessment methodology avoids the training phase completely and further outperforms all baseline approaches by a large margin. Our solution can be easily integrated into current face recognition systems and can be modified to other tasks beyond face recognition.Comment: Accepted at CVPR202

    Post-Comparison Mitigation of Demographic Bias in Face Recognition Using Fair Score Normalization

    Full text link
    Current face recognition systems achieve high progress on several benchmark tests. Despite this progress, recent works showed that these systems are strongly biased against demographic sub-groups. Consequently, an easily integrable solution is needed to reduce the discriminatory effect of these biased systems. Previous work mainly focused on learning less biased face representations, which comes at the cost of a strongly degraded overall recognition performance. In this work, we propose a novel unsupervised fair score normalization approach that is specifically designed to reduce the effect of bias in face recognition and subsequently lead to a significant overall performance boost. Our hypothesis is built on the notation of individual fairness by designing a normalization approach that leads to treating similar individuals similarly. Experiments were conducted on three publicly available datasets captured under controlled and in-the-wild circumstances. Results demonstrate that our solution reduces demographic biases, e.g. by up to 82.7% in the case when gender is considered. Moreover, it mitigates the bias more consistently than existing works. In contrast to previous works, our fair normalization approach enhances the overall performance by up to 53.2% at false match rate of 0.001 and up to 82.9% at a false match rate of 0.00001. Additionally, it is easily integrable into existing recognition systems and not limited to face biometrics.Comment: Accepted in Pattern Recognition Letter

    Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems

    Get PDF
    Heterogeneous cyberattacks against industrial control systems (ICSs) have had a strong impact on the physical world in recent decades. Connecting devices to the internet enables new attack surfaces for attackers. The intrusion of ICSs, such as the manipulation of industrial sensory or actuator data, can be the cause for anomalous ICS behaviors. This poses a threat to the infrastructure that is critical for the operation of a modern city. Nowadays, the best techniques for detecting anomalies in ICSs are based on machine learning and, more recently, deep learning. Cybersecurity in ICSs is still an emerging field, and industrial datasets that can be used to develop anomaly detection techniques are rare. In this paper, we propose an unsupervised deep learning methodology for anomaly detection in ICSs, specifically, a lightweight long short-term memory variational auto-encoder (LW-LSTM-VAE) architecture. We successfully demonstrate our solution under two ICS applications, namely, water purification and water distribution plants. Our proposed method proves to be efficient in detecting anomalies in these applications and improves upon reconstruction-based anomaly detection methods presented in previous work. For example, we successfully detected 82.16% of the anomalies in the scenario of the widely used Secure Water Treatment (SWaT) benchmark. The deep learning architecture we propose has the added advantage of being extremely lightweight

    ExerTrack - Towards Smart Surfaces to Track Exercises

    Get PDF
    The concept of the quantified self has gained popularity in recent years with the hype of miniaturized gadgets to monitor vital fitness levels. Smartwatches or smartphone apps and other fitness trackers are overwhelming the market. Most aerobic exercises such as walking, running, or cycling can be accurately recognized using wearable devices. However whole-body exercises such as push-ups, bridges, and sit-ups are performed on the ground and thus cannot be precisely recognized by wearing only one accelerometer. Thus, a floor-based approach is preferred for recognizing whole-body activities. Computer vision techniques on image data also report high recognition accuracy; however, the presence of a camera tends to raise privacy issues in public areas. Therefore, we focus on combining the advantages of ubiquitous proximity-sensing with non-optical sensors to preserve privacy in public areas and maintain low computation cost with a sparse sensor implementation. Our solution is the ExerTrack, an off-the-shelf sports mat equipped with eight sparsely distributed capacitive proximity sensors to recognize eight whole-body fitness exercises with a user-independent recognition accuracy of 93.5 % and a user-dependent recognition accuracy of 95.1 % based on a test study with 9 participants each performing 2 full sessions. We adopt a template-based approach to count repetitions and reach a user-independent counting accuracy of 93.6 %. The final model can run on a Raspberry Pi 3 in real time. This work includes data-processing of our proposed system and model selection to improve the recognition accuracy and data augmentation technique to regularize the network
    • …
    corecore